

Pergamon

Tetrahedron Letters, Vol. 35, No. 36, pp. 6647-6648, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)01439-6

A Study of the Aluminum Hydride Reduction of Unsaturated Cyclic Epoxides

Eamonn F. Healy^{*}, J. D. Lewis and Amy B. Minniear

Dept. of Chemistry, St. Edward's University, 3001 Sth. Congress Ave., Austin, TX 78704

Abstract : The aluminum hydride reduction of 3,4-epoxycyclopentene to 3-cyclopentenol has been previously observed¹ and the complete regiospecificity of the reaction is confirmed here. A mechanism is proposed involving initial complexation of the aluminum hydride anion with the double bond followed by hydride transfer to the 3-Carbon. Analysis of the atomic charges determined from semiempirical electrostaic potentials support the proposed mechanism. Spectroscopic analysis of the resultant alcohol indicates the presence of an O-H^{mm} intramolecular hydrogen bonded interaction.

The epoxidation of cyclopentadiene with peracetic acid yields epoxide 1. Reduction of 1 with Lithium Aluminum Hydride in ether yields only 3-cyclopentenol, 2, in 65% yield. Use of a threefold excess of LAH increased this yield to 85%.

NMR analysis of the product [δ 5.6, triplet (2H); δ 4.3, quintet (1H); δ 3.7, singlet (1H); δ 2.2–2.4, multiplet (4H)], and comparison with the NMR of pure 2-cyclopentenol, formed by LAH reduction of 2cyclopentenone, [δ 5.8, triplet (2H); δ 4.8, doublet (1H); δ 4.3, singlet (1H); δ 2.0–2.4, multiplet (2H); δ 1.4–1.8, multiplet (2H)], confirms the complete regiospecificity of the reduction. Aluminum Hydride reduction of saturated cyclic epoxides such as 3 occurs via an S_N2 mechanism to yield only the axial alcohol.² For 3,4-epoxycyclopentene however geometry optimization using the MNDO semiempirical procedure³ gives the puckering of the ring, as determined by the C₁C₂C₃C₄ dihedral angle, to be only 10 indicating an essentially planar system This indicates that S_N2 attack by AlH₄⁻ at carbons 3 and 4 should be comparable due to the very similar geometric environments.

A novel mechanism is proposed for the LAH reduction of 1 involving initial complexation of the AlH₄⁻ with the double bond, 4. Sole formation of the 3-cyclopentenol is now proposed to be due to the geometric constraints imposed on H⁻ transfer due to the formation of complex 4, limiting hydride attack to C_3 .

Table I summarizes the electrostatic potential (ESP) derived atomic point charges calculated using the MNDO semiempirical wavefunction for both 3,4-epoxycyclopentene and 'AlH₄. The MNDO method has been shown to be superior to the AM1⁴ procedure for the calculation of ESP derived charges, and when scaled appropriately the MNDO ESP technique has been shown to yield charges of 6-31G^{*} quality.⁵ Both MNDO ESP and MNDO ESP Scaled charges are reported in Table I.

Table I					
	q (C1)	q (C ₂)	q (C3)	q (C 4)	q (Al)
MNDO /ESP	- 0.19	- 0.12	- 0.02	- 0.13	+ 0.67
Scaled	- 0.27	- 0.17	- 0.03	- 0.19	+ 1.04

Analysis of the charge distribution for 1 supports the proposed initial complexation of the aluminum hydride with the double bond by predicting significant charge buildup at the C_1 and C_2 carbons. Hydride transfer will now occur preferentially at C_3 due to the much shorter H₃AlH-C₃ distance. The significant negative charge calculated for C₄ will further inhibit hydride transfer at this position, reinforcing the steric constraints imposed by complexation.

FT-IR analysis of a dilute solution of 3-cyclopentenol, 0.04M in cyclohexane, shows a splitting of the O-H stretch into two absorption maxima at 3624 cm⁻¹ and 3600 cm⁻¹, corresponding to the free O-H stretch and a stretch associated with an O-H^{mm} π intramolecular hydrogen bonded interaction, 5.

The Δv observed of 24 cm⁻¹ is comparable with that observed for other unsaturated acyclic alcohols ($\Delta v = 14 - 35$ cm⁻¹), where such O-H^{mm} π interactions have been clearly identified.⁶

Acknowledgements This work was supported by a Departmental Research Grant from the Robert A. Welch Foundation. A. B. M. acknowledges the support of an undergraduate research scholarship awarded under the auspices of the above grant.

REFERENCES

- 1. Crandall, J. K.; Banks, D. B.; Colyer, R. A.; Watkins, R. J.; Arrington, J. P., J. Org. Chem., 1966, 33, 423.
- Norman, R. O. C.; Coxon, J. M., Principles of Organic Synthesis, 3rd Ed., Blackie Academic & Professional, 1993.
- 3. Dewar, M. J. S.; Thiel, W., J. Am. Chem. Soc., 1977, 99, 4907, as implemented in AMPAC 4.5, a quantum chemistry program from Semichem Inc.
- Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P., J. Am. Chem. Soc., 1985, 107, 3902.
- 5. Bessler, B. H.; Merz Jr., K. M.; Kollman, P. A., J. Compt. Chem., 1990, 11, 431.
- 6. Gotsch, L.; Olivarez, R.; Rhodes, S.; Healy, E. F.; Lewis, J.D., Paper PHYS 178, 205th National Meeting of the American Chemical Society (1993).

(Received in USA 14 June 1994; revised 20 July 1994; accepted 22 July 1994)